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THE EFFECT OF SURFACE CURVATURE AND
DISCONTINUITY ON THE SURFACE ENERGY DENSITY AND
OTHER INDUCED FIELDS IN ELASTIC DIELECTRICS
WITH POLARIZATION GRADIENT
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Abstract—Mindlin’s theory of elastic dielectrics with polarization gradient is used along with the values of
material coefficients obtained by Askar et al. to solve two types of problems involving cylindrical and spherical
cavities and a free linear crack in “plane-strain”. In the case of the two cavities the surface energy density of
deformation and polarization is found to be changed by an amount directly proportional to a length parameter /,,
of order of magnitude of the interatomic distance, and inversely proportional to the radius of curvature of the
cavity. As for the crack a stress singularity of the order ¢”* as ¢ — 0 is obtained in the absence of any external
forces. This singularity is of the same order as those given by classical elasticity and couple stress theories. How-
ever, the surface energy density of the crack surface is bounded.

INTRODUCTION

IN MINDLIN’s theory of elastic dielectrics [1] the internal energy density of deformation
and polarization is a function of strain, polarization and polarization gradient. This theory
yields a set of linear field equations in which the displacement, polarization and the electric
potential of the Maxwell self-field are all coupled through the constitutive relations even
for the cases of centrosymmetric and isotropic materials. Furthermore, due to the term
linear in polarization gradient in the energy density function this theory can account
for a surface energy density of deformation and polarization, which depends on the field
variables. In another paper [2], Mindlin shows, by means of one-dimensional example,
that his equations, rather than the classical equations of elastic dielectrics, are the long
wave approximation to the equations of a lattice of polarizable atoms. He also exhibited
the relations between the force constants of the one-dimensional lattice and the pertinent
coefficients in the constitutive equations of his continuum theory. Askar et al. [3] have
established the relationship between this continuum formulation and the lattice formula-
tion using Dick and Overhauser’s [4] shell model and have obtained the numerical values
of the material coefficients for a number of alkali halides, by means of the long wave
approximation of the discrete analysis.

Since the surface effects are directly related to the field variables, which in turn, depend
on the boundary conditions of a specific problem, this continuum theory permits the
study of effects of surface curvature and discontinuity on the surface energy density of
deformation and polarization and other induced fields.

In this article, first problems with cylindrical and spherical cavities are solved and
the influence of the surface geometry is deduced from a comparison of the curved cases
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with the plane case solved by Mindlin [1]. Secondly, the free linear crack in an infinite
medium is considered and the investigation of the fields along the crack axis yields singu-
larities of the type ¢* as ¢ — 0 at the crack tip. However the surface energy density remains
bounded on the crack surface. The mathematical treatment consists of uncoupling the
field equations after introducing the Helmholtz decomposition of the displacement and
polarization fields. The crack problem is attacked by reducing it to two pairs of simul-
taneous dual integral equations which, further, are reduced to a system of algebraic
equations by a procedure due to Erdogan and Bahar [5]. A similar problem involving
more than one field variable has been treated by Sternberg and Muki [6] in studying the
effect of the couple stresses on fields around a crack.

1. POLARIZATION GRADIENT AND SURFACE ENERGY IN ELASTIC DI-
ELECTRICS

For an elastic dielectric in vacuum occupying a volume V and bounded by a surface S,
the governing equilibrium equations, and the boundary conditions, in the absence of an
external body force and an external electric field, are {1]:

i =0, E, H”E,i_‘lb,j =0, —e¢+P; =0, in¥y

if,i

(1.n
g =0, in vacuum,
and
it =y, nk; =0, nleo(d; =)+ P] =0, on §, (1.2)
where t;;, E, are the stress and effective local electric force, E;; is derivable from the energy

density of deformation and polarization WHE,;; = dW"/aP; ), ¢ is the potential of Maxwell
self-field, P; is the polarization, g, is the permittivity of vacuum, »; is the unit outward
normal to S, ¢, ¢~ are the limits of ¢ from the positive and negative sides of S. The
constitutive relations, for isotropic media are 1]

by = Coaly i+ Caglty jHuyd+d Pyl +dadPy i+ Py,
E;= d12uk,k5ij+d44(ui,j+uj.i)+b12Pk,k5ij+b44(P',i+Pi.j)+b77(Pj,i_Pi,j)+boéij’ (1.3)
Ei = "'aPi’

where ; is the displacement and ¢, ,, c44, 12, d4q, b125 bas, b7, a and b° are the material
constants,
The surface energy density T is

T = 1b°[Pn.]s. (1.4)

Substitution of the relations (1.3) into the equilibrium equations (1.1) results in the
following coupled system of equations, in vector notations, in seven variables u, P and ¢:

044V2“+(C12 + C44)VV . ll+d44V2P+(d12 +d44)VV . P = 0,
d44V2u+(d12 +d44)\7\7 . ﬂ+(b44+ b77)V2P+(b12 +b44—b77)VV . P"aP“"VQS = 0,
—,Vp+V. P =0, Y (1.5)

Vi¢ =0,  invacuum.
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By introducing the Helmholtz decomposition [7, 8]
u=Vy+VxH, V.H=0, P=Vy+VxK V.K=0, (1.6)

into the “‘displacement” equations (1.5), and after some eliminations, the following system

of uncoupled equations is obtained.
InV:

(VZ—I79V4% =0, (V2—[;)V*H =0, V.H=0,
(V2—[[9V2y =0, (V2—L;9)VK =0, V.K=0, (VP-I[3)V3¢ =0,

(.7

and in vacuum:
Vip =0,

where

byi(diy/cyy) 2= (baa+bs7)—(dis/cas)
] 2 -

a+ep! a (1.8)
€1y = €12+ 204, dyy =dy;+2d,y, by = by +2bys.

B =

The quantities /2, I defined in equations (1.8) must be positive due to the requirement
of positive definiteness of W Their numerical values computed from the material co-
efficients, which are obtained by the application of the Reuss method of averaging [9]
to the material constants derived from lattice model [3], are positive as shown in Table 1
[10].

During these operations the order of the differential equations is artificially increased.
In order to have a determinate problem, further restrictions, in addition to the boundary
conditions, are brought in by requiring the compatibility of the solution with the original

TABLE 1. ISOTROPIC MATERIAL COEFFICIENTS AND RELATED

PARAMETERS

Material NacCl KCl
¢, 10*2dyn 0-148 0105
Cea cm? 0-149 0105
d,, 107dyncm 0470 0392
dua C —-0-170 —0178
biz  10%dyncm® —16x1077 —256x 1077
by — 0344 0-600
b, c 0-344 0-600

10" d

C

10° dyn cm?
a —é”; om 174 243
2 e s 0527 0873
g 107%em 3.943 4926
M 0995 0995

B 2-299 5944
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equations (1.5). Also, due to the nature of the potentials, they can only be determined
up to an arbitrary constant which may be set equal to zero.

2. FREE SURFACE PROBLEMS

2.1 Half space problem

This problem has been solved by Mindlin [1] for the case of centrosymmetric cubic
crystals. The solution for the isotropic case is analogous to that of Mindlin’s. However
itis presented here as a reference for the comparison of the curved surface cases and to make
some estimates of the effects due to the surface geometry.

Consider the dielectric occupying the region x; > 0 with x,, x axes lying on the free
surface. At x; = 0 the free surface conditions, according to equations (1.2), are

Ly =ty =1t,;=0, Eiy=E;;=E;=0 eo(@i—0)+P =0. (21)

In addition, the fields are required to be regular at infinity.
Due to the symmetrical nature of the problem, one may assume

y=yx), x=xx) ¢=¢x) H=0 K=0 22

Using (2.2) in the uncoupled equations (1.7) and requiring compatibility with the original
equations (1.5), one has:

bod“ —x1/l1
e —-ll(a‘*‘EJI)CuG ’
b()
P=— "x1/51’
S NS
2.3
¢ = o B e”@h forx; > 0.
TS ’ =
¢ =0, for x; < 0.
The surface energy density and the nonvanishing stress components are
_ (bo)z
T 2da+er
a+eg ) 24

o ~1
Lyo == fag = C i ﬂ_%_._‘.i_‘_% M—l e ¥/l
22 33 ndn ¢y digf\diiday

It can be seen that t,, is of the same order of magnitude as ¢, (which is A+ 2 in terms
of the Lame constants), the elastic stiffness of the material, since the product of dimen-
sionless ratios of material coefficients in the last equation of (2.4) is of the same order
of magnitude according to the values given in Tabie 1.

The stress decays very fast away from the boundary since the parameter [, as cal-
culated in [3], is of the order of magnitude of the interatomic distance as estimated from
electron diffraction data [11].
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For convenience of comparison in the following sections, the quantities in (2.3) and (2.4)
on the surface are defined as

W =ux; =0, P°=P(x,=0), ¢°=dx, =0)

70 (2.5)

1 tgz = t(s)a = t,(x, = 0).

Hi

2.2 Cylindrical cavity problem

Consider an infinite medium containing a cylindrical cavity whose axis coincides with
the z axis. In the plane perpendicular to z, the polar coordinates r, § are used. At r = R,
the surface of the cylindrical cavity, the free surface conditions are:

op* 0~ _
F——|+E=0. (26

=0, E,=Ey,=E,. =0, %(

In addition, the fields are required to be regular at infinity, r —» oo, and ¢ to be regular
on the axis of the cylinder, r = 0.
Because of the symmetry, one may assume

Y=y, x=xn bd=¢rn H=0 K=, (2.7)
1d d

2
=rdrdr

As in Section 2.1, one has:

U, = uo{ K (/1) + BR/NK (R/1,) }
T UKo(R)+aolly/RIK (RIS

= K, (/1)

. PO{[Ko(R/’1>+a(h/R)K1(R/ll)1}’ 2.8)
= ¢° Ko(r/ly)

$=¢ {[KO(R/11)+“(II/R)Kl(R/ll)]}’ r >R,

¢ =0, r <R

where u°, P, ¢° correspond to the fields at the free flat surface as defined in equation (2.5),
K(x), K,(x) are modified Bessel functions of the second kind and

2 2
&= 2(b44_&) / (bu_&

Caq

(2.9)
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The surface energy density and the nonvanishing stress components are

K\(R/1)
Ko(R/1)+a(l,/R)K (R/1;)

o g0 Kot l)+ UK (/) — (R (y/r)K(r/ly)
o Ko(R/I)+all,/RIK (R/1,) ’

= 10 Ko("/h)
=7 OB KR/ +ally, /RK (R/Y

where T9,19,, 135 correspond to the surface energy, stress components at the flat free
surface as defined in equation (2.5).

As mentioned in the previous section, [, is of the order of magnitude of the interatomic
distances so that, in the domain of validity of the continuum hypothesis, R/l,,r/l, are
large numbers. The use of the asymptotic representation (n/2x)* e ~* for the Bessel function

K,(x) results in

....TO

(2.10)

t

l
T=T1-az] 11
( o R) (2.1
Thus the absolute value of surface energy density is reduced by the curvature of an interior
cylindrical surface as compared to the case of a flat surface since a is positive for the

materials shown in Table 1.
As the pressure is proportional to the negative of the spherical part of the stress tensor

p= it (212)
the “pressure” at the surface of a cylindrical cavity can be written as
4ld,, c\dy, T°
) 12 12 1%
=p ", 2.13
P=Pp 3{du c“)b"aR @13

where p° is the pressure at a flat surface, and can be obtained by means of equations (2.12)
and (2.4). The form of this result is similar to that of the classical Laplace formula [12].
Since the second term in equation (2.13) is positive according to the values given in Table 1,
the pressure at a cylindrical interior surface is reduced by an amount which is directly
proportional to the surface energy density T° and inversely proportional to the radius
of curvature.

2.3 Spherical cavityt

Consider an infinite medium containing a spherical cavity whose center is chosen as
the origin of the spherical coordinate system (r, @, w). At the surface of the cavity, r = R,
the free surface conditions are:

09T ¢~
t,=tg=1t,=0 E,=FE,z=E,=0 & ——"2")4+P =0. (214
or or
+ It has come to our attention, after the preparation of the manuscript, that this problem has been treated by
Schwartz [13]. The two results coincide by noticing that for the modified Bessel function of order §, x K {x) =

Ja/2x e
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In addition, the fields are required to be regular at infinity, r — co, and ¢ to be regular
at the center of the sphere, r = 0.
In a similar manner as in the preceding sections, one obtains

o W/N*K 5 (r/1y) + BR/T)* (1 /R)*K 5 5(R/1))

= 0L RYK (R + 20 /RFK  (RI)T

— o (ll/r)%K3/2(r/ll) 2 15
B = P TR K, p(R/1) + 2200, /Ry p(RJL)T @13
¢ = ¢o (ll/r)Kl/Z(r/ll)

[(1;/R}*K (R/l;) + 2“(11/R)3/2K3/2(R/l1)] ’

where K, ;,(x), K;,(x) are modified Bessel functions of the second kind and «, B are
defined in equation (2.9).

The surface energy density and the “pressure” at the boundary for large values of
(R/1,), by the similar operations to those in the previous section, are:

T= TO(I—a—zﬁ),

R
. 2.16)
) ot _eun|dra 2T°
3 d14 Cia bO R~

3. CRACK PROBLEM

3.1 Formulation as a mixed boundary value problem

Consider an infinite elastic dielectric, containing a free linear crack at the surface
defined by
x =0, —L<y<lL, —00 <z< 0. (3.1

The medium is free of all external effects and the surface energy is the only source
which induces mechanical and electrical fields. The ‘“plane strain” problem to be con-

sidered, is defined as:
u, =0, P, =0, (3.2)

and all other non-zero field quantities depend on x, y only.
This boundary value problem is governed by equations (1.5) and subject to the free
boundary conditions, for 0 < |yl < L

txx(os y) = txy(o, J’) =0, Exx(O’ J’) = Exy(()’ .V) =0,

09 (0,y) 997(0,y)
0x 0x

In addition, the fields are required to be regular at infinity and ¢ * is required to be regular
inside the crack.

In view of the symmetry of the problem about the y axis, as for crack problems in
classical elasticity [14] and couple-stress [6] theories, one may assume that u,, P, and
0¢/0x are functions odd in x and even in y while u,, P, and d¢/0y are functions even in x

+¢&o ' B0, y) = 0. (3.3)
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and odd in y. Thus the solution of the mixed boundary value problem for the half space
x = 0, subject to following conditions at x = 0
0,9 =0, E 0y =0,

290, Jo7(0, -
209 % 0N, s n=0 osihi<m,

Ixx(()» }’) = 0’ Exx(oa y} = 05 0 < M < L’
ux(oa J’) = 03 Px(o’ Y) = 07 L = M’

34

together with the regularity conditions.

3.2 Auxiliary problem
In preparation for the solution of the mixed boundary value problem defined by (3.4),
consider first, the boundary value problem specified by, for 0 < iyl < o0,

txy((}a y) =0, Ex):(Oa n= O?

30, y) 0,y ~
A~ ax Tt 'PL0,y) =0, (3.5

w0, ) =1, PO, y) =20

together with the regularity conditions at infinity. The solution of this problem in terms
of the unspecified functions f and g, which are even functions of y, coincides with the solu-
tion of the free crack problem provided that f, g satisfy the boundary conditions of the
equivalent mixed boundary value problem, equations (3.4).

The foregoing auxiliary problem can be solved by choosing the potentials as

y={xy), 1= %y

(3.6)
H = H(x, y)e,, K = K(x, y)e,.
and by the use of Fourier integral transform and its inverse defined as
[ s
ghum = \/ > f g(x, y) e~ "™ dy,
TJ o«
(3.7

1w i
¢0x, y) = \/Eﬁf(x’ n) e dn.

By substituting equations (3.6) in the uncoupled equations (1.7), using the constitutive
equations (1.3), the boundary conditions (3.5) with the regularity conditions at infinity,
checking the compatibility conditions with the original field equations {1.5), and applying
the Fourier transform with the considerations of the symmetry of the functions, one
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obtains, for x > 0

fi ('1)

2 0
wix, y) = \/;f {[31 —1+e,xnQ, — e BnH(Q — Q)"+ [(e;— 1 +eyxn+ e3e6l§112)Ql
0

+Q, +(es— e 3y —Q) Iy g‘f;q)}

H(x,y) = —\/%J;m {x f(n)+(x1191 egl? 2Qs)ﬂ g(:)} sin ny dn,

cos ny dn,

2 (= g
75, 3) = \/ 2[7 der@, -0 B e e,
Mo diy 1
+es5n2(Q, — Q)] &} cos iy dn, (3.8)
K(x,y) \/ f esl? 2(25 sm ny dn,
2 _ ¢
olx, y) = \/‘f & ! {3415712(91 2)_11‘ Z‘“((Fl
TJo diy 1
_ 2.2 g(n)
[Q, +(es—~exdl5n*(Q, —QZHT cos ny dr,

and for x < 0

¢‘ =0,
where
do, ¢
€y = c44/clls €y = d44/d11, e3 = -—-4_4_1_1.’
dyiy Caa
-2 dyy 044) d?,
i B S R IV L
diy cufeilate s
e =2 @_d_‘.‘ﬁ) daa €e
= Ner, cua) (@t e, OB (T +azy)
[ by di, \7H]!
=21+ 1~
" b44( byscaa ’ (3.9
- n (217 29
Q) =e ™, Q,x, 1) = ——t— e~ P HIVx
o =e 0 = G
— _(2 1—2}%’x _ }? 2 fzix
Q,(x, ) = e~ WHITN Q4(x,n)_me 21y

Qqlx, ) = e~ 1
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Using the definitions given by (1.6) and the constitutive relations (1.3), the solution of the
auxiliary problem in terms of f(n) and g(n) is

i = 2 [ {i=emn e 100, +edr@, =)+ -eeswn,
0
d
+(1—(es —e6)3n*)(Q, —Q;) —e3e6l3n*(Q, — Qs)]c-ll—lg(ﬂ)} cos ny dn,
1

wen =3[ fte,—1-exn0, - euiri@, 0170
0
+es((1+e)— (1 —e)xn)Q, — (1 —(es —ee)3n*)(Qy — ;)

d )
+esl5niQ —n" 2 +1; 2)94)];—1—‘2@)} sin ny dn,
11
P 21 2,2 €11
(X, ) = po . —e4lin (Ql_Qs)d-l:f('?)

+[Q;+ 651§n2(91 —Q;)+ 961%’72(93 - Qs)]g(ﬂ)} cos ny dn,

2 ® c
Plx,y) = \/Ef {e4l%ﬂ2(g1 _Qz)a‘l’if(ﬂ) —[Q,+ e4l%’72(91 -Q,)
4] 11
+e6l5n*(Qy — 1 2% +15 )QW)Z(m); sin ny dn,

2 0
teodX, y) = \/;f {[_A1(x’1+ NQ, _Aze4l§’72(91 _Qz)]cuﬂf(’?)
0
+[A,(xn+ 1DQ, + A5Q, + Ay(es — e6)3n(Q, —Q,)1d, 1’7?('/)} cos ny dn,

t,x, y) = \/% f: {[Al(xr]—— 1)Q, — A,e,131;°Q,

+ A0, 504 (Q —~ Qy)ley nf )+ [(Ag + A xm)Qy

+(A3— A7 20 )R, — Ay(es —e6)n*(Q, — Q))d, mz(nﬁ cosnydy,  (3.10)
tots = |2 [Jitimnts + e @, esnfo

+A,(1—(e5—ee)3n*) Q) —Q3)Mdy 1n8(n)]; sinnydy,

E,(x,y) = \/ %Jj{[ — As(xn+1)Q, + AQ; — A, Bn*(Q, — Q,)1d, 11 f(n)

+[(Ao— Agxn)Q, — (1 —eze0)ly *n7?Q, + B,Q, + B,ec Q4
- B3€51§i12(01 —Q,)— B4l§’72(91 —€)

— Byl3n*(Q, — Q,)1b, 1’7§(’1)} cos ny dn+b°,
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E,(x,y) = \/ “12; j {[As(xn—1)Q; + BsQ, + A Bn*(Q, —Q,)ld, nfn)
0

+[(Ag + Agxm€ — e ol7 217 2Q, + BQ, — ByesQy + Bsesiin*(Q, — Q)
+ B4l§’72(91 —Q)+ B3l§n2(Qz —-Q,)1b, 1’12(’7)} cosny dn+ b,

2 e e
E (x,y) = \/; J- {[AsxnQ, + A, 5507 (Q, — Q3)1d,; 1n.f(n) + Agxn€y
0
+(B,+ B4l§n2)(Q, — Q)+ (B, + B3esl§’12)(91 —Q,)
+ B3 15n%(Q5 — Q4)1by 1 18(n)} sin ny dy,

2> .
E,{x,y) = E,(x, y)+ \/7‘: f BgQsb, ng(n) sinnydn.
0

The coefficients, A;, B; and e; appearing in (3.10) are all made of dimensionless ratios of
the material constants. They are defined as follows, ¢, e,, ..., ¢ are defined in (3.9),

e = ﬁi [4 = di4
! b11, s b11044,
Co = ﬂldﬁ b12 d12d11
° byicas’ a bu b“c“’
Ay =2e,(1—ey), A, = e, —ey)
Ay = —2e;—ey))(1+e,l72B), Ay = —2ei +ey),
As = 2e,(1—¢y), Ag = el(l—e3leg NT2L, (3.11)
A, = 2e4(e2 b;C“)I, 22, Ag = 21 —e,)eg,
Ag = — ey —ey)eg—2(1 —ey)e ey, B, = (1—ezeq)(es—eg)(e; —eg)lT 213,
B, = 2(e;—ey), By = 2(e,; —e,ey),
b
B4 = 2(61—82)8689, BS = e4 g‘ll 12614)11 zl
dyy @2

- d
Bg = (es—ee)eoli 213 +2(e; —eyey), B, = _2(37“#),
44C11

b
Bs = 226#171.

3.3 System of dual integral equations

By comparing the boundary conditions of the auxiliary problem, equations (3.5)
with those of the mixed boundary value problem for the crack, equations (3.4), one sees
that the first three conditions are common to both problems. Hence, regarding f(y), g(y)
or equivalently f(), 2(n) as the basic unknowns, two dual integral equations result from
the requirement that the general solution of the auxiliary problem, equations (3.10) satisfy
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the remaining two conditions in equations (3.4). Introducing the normalization with respect
to the half crack length L as:

x* = x/L, y* = y/L, F=1/L, w* = nl, (3.12)

and thereafter dropping the stars, the system of dual integral equationsreads :for0 < |y} < 1

| (i et st 1) ey 7
+[A —Ap? +173)7 ~ Ayles —ee)z%’?z(l —nin? +17 5" Hd, M)} cosnydy =0,
2 o
\/E fo {[“‘ As +A6?7(’72 + ‘};2)_% - Av@’?z(l ““’?(’?2 +1y 2)—%)]611 i’?f(??) (3.13a)

+leseo— D Ml + )7 + Ag+ Byn(n* + 179"+ Bregn(n® + 1974
~ ByesBn* (1=n(n +17 %)™ = Byin* (L= n(n® + 15)~* — B3 2n*(n* + 17 ) *
—n(n? +1; )" H)by n&n)} cos ny dy = —b°L,

and for 1 < |y

f f)cosnydn = f g(n)cosnydn = (3.13b)

It is seen that equations (3.13) consist of two pairs of dual integral equations with trigono-
metric kernels. Erdogan and Bahar [5] presented a method of solution of systems of dual
integral equations as a generalization of the procedure due to Tranter [15] for a single
pair. This method results in the reduction of a system of simultaneous dual integral equa-
tions to an infinite set of algebraic equations.

Consider the integrals {16]:

© (2k—1)"* cos[(2k — 1) sin ™ }(y)], y<il
f 1™ e s(m) cosny dn = { (3.14)
0 0 y > 1
i | costh=sin” ) cosydin = 1™ T ()
where J,, () is the Bessel function of the first kind and &, k are positive integers.
By expressing
fm = ’?“l z M J g1l g = n! Z NJ - (), (3.15)
k=1 k=1

the pair of equations (3.13b) are identically satisfied in view of the property given by the
first equation of (3.14). The remaining pair of equations (3.13a), after multiplying by
[2/(2h — 1)n] cos[(2h— 1) sin ™' ()] and integrating with respect to y in the interval (0-1),
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reduce to the following system of infinite algebraic equations:

@«

z (4,1, ik~ Aze4lf12,hk)cuMk+[“Alll.hk"'Azlllz,hk"’Az(es_es)lfla,nk]duNk} =0,

k=1

{( - Asllll.hk+ A6I%12,hk - A7l:1’14,hk)dl le+ [(e3e9 - I)IO,hk+ A‘)ll 1 1,hk (316)

1

T

k
+Bxlﬂz,nk*’Bzeelﬂs,hk—Bsesl%Imhk—341315,“—‘Bz,l‘tls,hk]bnNk} = —b%6u/2,

where

Ty = ( ) f Gn? + 1) 27 2 s (1 24— 1 () dn,

2\#p®
Il,hk = (;t) J;) ’7_1-]2»;—1('7”21:— 1(n1) dn,

2\t (=
) f B+ 1) 2 (0 0- () dn,
0

Iy =

2 (B + D)7 () gi— () di,

PALNA
nf 1, J

! (3.17)
(2) f ( (12 2+1)%) 2n-1(MJ 26— 1(n) dn,

h ZJ'OO ln
= 1—————=|Jy - 1M 5 - dn,
(ll) . '7( (l%”2+1)§ 2n-1(MJ 2 1(n) dn

%12 L
f (l 1,,2+1)% l§f12+1)‘} Jon— 1M 26— 1 () dn.

In obtaining the right hand side of the second equation in (3.16), use is made of the following
identity

h=1 G.19)
h+#1 ’

(=R

(%—ETEJ cos[(2h—D)sin~ ! ()] dy = {

At this point, the boundedness of the integrals defined in (3.17) must be considered.
It is known that the Weber—Schafheitlin integral [17]

f w3 0 () dn

0
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is bounded for ¢ < 0. Therefore the first four integrals in (3.17) are bounded. The integrals
Iy > Is yu and Iy appear to involve integrands of the type #J,(1)J (r). However by noting
that

(; in ) n [, 1 Py
N e+l ~ Err )i+ 2012

af_bm _ dm ) _ n’ (3.19)
I\ + DY B+ 1P Uin* + )30E0* + 1P '

1 (1___1_ B b [ 1 B
x[lznﬂ 2n+12 ) U+ 20+

one sees that these indefinite integrals are convergent, since the integrands behave as
71T, ().

By substituting coefficients M,, N,, which must be determined from the system of
algebraic equations (3.16), into (3.15) for f(n) and g(x), then substituting the latter into
(3.10), one obtains the fields satisfying the mixed boundary value problem (3.4) for the
free linear crack.

However, the chief interest of the investigation in this section is to study the behaviour
of the fields along the axis of the crack (y axis), in particular, the behaviour of the functions
near the tip of the crack. A detailed examination of (3.10), with consideration of f, g given
by {3.15) and relations (3.19), reveals that u, P and ¢ are convergent along the axis (x = 0),
since the behaviour of the dominant term for large # in the integrals involved is of the
following form [17]

fm,,—uz,‘,,l(,,)s‘ dn = (k- 1)~ [(2k Dsin™'0)), vy <1,
0 COs yn

(3.20)
sm
[k~ D)m/2]
OS

T @k=D+JP DT

However, the dominant term for large 5 in the integral expressions of t,,,t,,, E,,., E,,
and E,_ along the y axis behaves as the integral [17]

y2 L

S k= 1) sin~ 1)
. -— S
sin yn cos Y

j; Jz&—:(??)cosyn dnp = JA=3 » y<1i
TSk — 1ymy2)
-~ Sin
J07 1) DA JOA T

Thus it is seen that along the y axis, ¢, t,,, E,,, E,, and E, are divergent near the crack
tip and behave as O(¢ " *)as y = 1+¢,¢6 — 0. The arder of the singularity is similar to those
for the stresses at the crack tip in classical elasticity theory [18] and in couple stress theory
[6]. Nevertheless, the surface energy density 7, equation (1.4), is still bounded on the
surface of the crack.

(3.21)

y= 1



The effect of surface curvature and discontinuity on the surface energy density 537

In conclusion it should be observed that the surface effects are confined to the im-
mediate neighbourhood of the boundaries and decay exponentially as e~ where I,
is a length parameter of the order of magnitude of interatomic distances.

For an interior surface, the surface energy density is reduced by an amount propor-
tional to /,/R where R is the radius of curvature, however, this change is very small in the
region where the continuum hypothesis is valid. Furthermore, the “pressure” on a curved
surface has the same form as the one given by the classical Laplace formula [12].

In the case of a free linear crack, the presence of the surface energy alone induces a
stress singularity of the type £~ * at the crack tip as ¢ — 0, nevertheless the surface energy
density remains bounded. This singularity is of the same type as that obtained for crack
problems in classical elasticity and couple stress theory, however in the latter cases the
stresses are induced by the external forces.

In the present theory the presence of the polarization gradient term in the internal
energy density function leads naturally to the concept of a surface energy density, which
in turn allows one to investigate the effects of surface curvature and discontinuity on the
induced fields.
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AbcTpakT—/{ns pacyeTa JABYX THMMOB 3afay KacaloLMXCHA LMIHHADHYECKHX U CHEPUYECKHX TPELUHH M
cBoGOIHOM NMHEHHOMR 1LIENH B 1UIOCKOM RePOPMHPOBAHHOM COCTOSHHM, HCTIOJIB3YETCH TeopHs MMHIUTHHA
YOPYTHX OUINEKTPUKOB M 3HAYeHHs Ko3hduIMeHTOB Matepmana, nonyyensl AckapoM, JIu u Kakmakom.
Hns ciyyas AByX TPEIIMH, MIOTHOCTh IIOBEPXHOCTHOM 3HEPTUM AedopMaLMK H MONAPH3ALHK OlIPENENAETC
TaK, YTO OHa H3MEHAETCA NPOCTO MPOMOPLUMOHANBLHO K NApaMeTPy JJIMHEI [, IPPAKA BEIMYHHbI MEX1ya-
TOMHOI'O PacCMOSHHS ¥ 06PaTHO MPONOPLMOHAIIBHO K PRAMYCY KPHBM3Hb! TpewMHbl. Tax, kak ans wenu
Oy 4aeTCA CHHIYNSPHOCTD TOpsAAKa (¢~} npu (e~ 0 u npn oTCyTCTBUM BCeX BHEWHMX CHIT. ITa CUBTYIAD-
HOCTb OKa3bIBAE€TCH TAKOTO X€ CaMOro poaa, Kak CHHIYJIAPHOCTB, BBHITEKAIOWIAS M3 TEOPHH YNPYrOCTH M
TEOPUM MOMEHTHBIX Hanpsxeuui. Ho onmako mIoTHOCTE NOBEPXHOCTHOM IHEPTHM OTPAHUYEHA HA MOBED-
XHOCTH LUETTH.



